miércoles, 5 de junio de 2013

Raíz cuadrada

Saltar a: navegación, búsqueda
Expresión matemática de "raíz cuadrada de X".
En las ciencias matemáticas, se llama raíz cuadrada de un número a cualquier otro número que elevado al cuadrado, es igual al primero con esta definición cada número complejo admite exactamente dos raíces cuadradas (estas son iguales en módulo). A veces se abrevia como raíz, siendo su símbolo: \sqrt{\ }. Es la radicación de índice 2 o, equivalentemente, la potenciación con exponente ½. El concepto de raíz cuadrada puede extenderse a cualquier anillo algebraico, así es posible definir la raíz cuadrada de algunas matrices. En los números cuaterniónicos los reales negativos admiten un número infinito de raíces cuadradas, sin embargo el resto de cuaterniones diferentes de cero admiten sólo dos raíces cuadradas.

Función raíz cuadrada

La gráfica de la función  f(x) = + \sqrt x es una semiparábola con directriz vertical.
La raíz cuadrada permite definir una función real sobre los números no negativos, para cada número real x esta función se define como el único número no negativo y que elevado al cuadrado es igual a x. Consiste en hallar el número del que se conoce su cuadrado. La función raíz cuadrada de x se expresa equivalente de las siguientes maneras:
 y = \sqrt x,\qquad  y = x^{\frac{1}{2}}
Usualmente la raíz cuadrada de un número entero no es un número racional a menos que el número entero sea un cuadrado perfecto, como por ejemplo:
 \sqrt{16} = 4, \quad \sqrt{64} = 8, \quad \sqrt{144} = 12
ya que:
 16 = 4\times 4 = 4^2, \quad 64 = 8\times 8 = 8^2, \quad 144 = 12\times 12 = 12^2
El descubrimiento de que la raíz cuadrada de muchos números era un número irracional se atribuye a los pitagóricos. Los babilonios y egipcios ya disponían de medios de estimar numéricamente la raíz cuadrada, pero su interés parece haber sido eminentemente práctico por lo que no parecen existir referencias sobre la naturaleza de la raíz cuadrada y el problema de si esta podía ser expresada como cociente de dos números enteros.

Propiedades generales

Gráfica de la ecuación:  y^2 = x
La función raíz cuadrada  f(x) = \sqrt{x} es una función cuyo dominio e imagen es el conjunto \left[0,\infty\right) (el conjunto de todos los números reales no negativos). Esta función regresa un valor que es único. Las siguientes propiedades de la raíz cuadrada son válidas para todos los números reales no negativos x, y:
  • \sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}
  • \sqrt{x} = x^{\frac{1}{2}}
  • La función raíz cuadrada, en general, transforma números racionales en números algebraicos; \sqrt x es racional si y sólo si x\, es un número racional que puede escribirse como fracción de dos cuadrados perfectos. Si el denominador es 1^2 = 1\,, entonces se trata de un número natural. Sin embargo, \sqrt 2 es irracional.
  • La interpretación geométrica es que la función raíz cuadrada transforma la superficie de un cuadrado en la longitud de su lado.
  • Contrariamente a la creencia popular, \sqrt{x^2} no necesariamente es igual a x. La igualdad se mantiene sólo para los números no negativos x, pero cuando x < 0, \sqrt{x^2} es un número positivo, y entonces \sqrt{x^2} = -x. Por lo tanto, \sqrt{x^2} = \left|x\right| para todos los números reales x (véase valor absoluto).
  • Suponga que x y a son números reales, y que x^2 = a, y se desea encontrar x. Un error muy común es "tomar la raíz cuadrada" y deducir que x = \sqrt a. Esto es incorrecto, porque la raíz cuadrada de x^2 no es x, sino el valor absoluto \left| x \right|, una de las reglas descritas anteriormente. Luego entonces, todo lo que se puede concluir es que \left| x \right| = \sqrt a, o equivalentemente x = \pm\sqrt a.
  • En cálculo, cuando se prueba que la función raíz cuadrada es continua o derivable, o cuando se calculan ciertos límites, la siguiente igualdad es muy útil (consiste en multiplicar y dividir por el conjugado, véase Binomio conjugado):
\sqrt x - \sqrt y = \frac{x-y}{\sqrt x + \sqrt y}
y es válida para todos los números no negativos x e y que no sean ambos cero.
  • La función \sqrt x es continua para todos los números no negativos x, y derivable para todos los números positivos x (no es derivable para x=0 ya que la pendiente de la tangente ahí es ). Su derivada está dada por
f'(x) = \frac{1}{2\sqrt x}
\sqrt{x+1}\,\!  = \sum_{n=0}^\infty \frac{(-1)^{n}(2n)!}{(1-2n)n!^2 4^n}x^n

 =  1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16} x^3 - \frac{5}{128} x^4 + \dots
converge para \left| x \right| < 1.